

汽车鼓风机工作电路图_罗茨鼓风机
汽车鼓风机工作电路图:【原】【视频课堂】汽车空调鼓风机电路图详解
公众号首页菜单可查故障码
视频版
图文版
本期视频课堂为大家分享汽车空调线路图。汽车空调有一个元件相信大家非常熟悉,空调的控制面板,它会控制空调的风速、空调的各个功能和AC循环等。
以大众某款车的空调线路图为例,可以看到空调线路图中4.0、2.5、1.0这些数字,黑红、蓝红、红色等标识;数字越大,线越粗;标识表示线的颜色:红色表示红色线,黑红表示红线和黑线组成线束。
除了标识以外,还有一些其他的(元件),比如空调继电器,空调的档位开关,空调的暖风电阻,鼓风机,进气风门电磁阀(四伏电机),蒸发箱温度传感器,室内温度传感器。这样我们看电路图会比较直观。
当我们了解电路图中线束的颜色、粗细、电子元器件以后,接下来看线路图,会更加容易一些。
举个栗子
压缩机的空调电路图:
电源经空调保险,到空调继电器,由继电器接通以后,到六号针脚,会有一个回路产生,六号针脚是黑绿色,有一根线到档位开关,到鼓风机,控制鼓风机的运转。S16这根线:在继电器里通过一号针脚进行搭电,搭电以后八号脚和四号脚进行开关闭合,红色线进入电源,直接到档位开关,由档位开关来控制鼓风机的运转。
顺序:点火开关-空调保险-空调继电器-档位开关-鼓风机电阻-鼓风机
汽车空调电路图里涵盖了多种工况电路图,同样是经过保险的电源线,到第二期空调的连接点,进入第二期到AC开关,由AC开关导通第七线(黄蓝),由绿色线直接到空调继电器,产生一个同样的电磁开关,一号脚、二号脚接地导通,八号与七号进行开关闭合,开关闭合以后黑黄线获得了4.0电源。通过线路到第八脚,连接在我们空调暖风电阻一号脚位置,通过一号脚连接四号脚,连接我们的鼓风机,使鼓风机工作。AC开关按下去,以慢速来进行运转,目的是为了防止蒸发箱表面结霜。同时,我们还可以通过档位开关来控制鼓风机的工作。
汽车鼓风机工作电路图:一文看懂汽车空调系统的电路图和工作原理
该电路采用德国大众汽车公司独具特色的纵向排版方式,整个电路上部约1/4部分表示中央继电器板总成,最下面一横线表示接地线,接地线至上部中央继电器板之间从左到右集依次是各种电路元件、开关、连接导线等,接地线下面的数字则把各种电路元件、开关、连接导线在图纸上的唯一位置以数字序号表示出来。在某一序号的位置上通常只对应画一个元件或一根导线。
一汽大众速腾空调电路如图1-图5所示,从左至右按主要部件的工作情况可分成三大部分:第一部分即图1-图2中1~22位置是鼓风机V2的控制电路;第二部分即图2-图5中从16~58位置是压缩机电磁离合器线圈N25及内循环真空电磁阀N63的控制电路;第三部分即图3、图5中从31~45及64~68位置为电子风扇V7、V8的控制电路。三方面电路互相联系,互相渗透,构成较完善的整个汽车空调系统的控制电路。
图1▲
(汽車维修技术网
图2▲
图3▲
图4▲
图5▲
1. 鼓风机V2的控制电路
鼓风机除了在制冷系统工作时将冷风吹向车厢内各个角落处,还要用于车厢内的通风与暖气以及前风窗玻璃的除霜去雾等功能的吹风,所以它应该在点火开关接通后即可进行控制操作。根据鼓风机工作情况,鼓风电机电路可分为两种工况,分析如下:
(1)点火开关接通后满足通风或去雾除霜功能的电路分析
根据车辆通风或去雾除霜功能的要求,无论发动机处于熄火还是工作状况,都应满足车辆通风或去雾除霜功能的基本操作。为此只要点火开关接通,中央继电器板内X线将有电,这将导致空调继电器的一组触点进入工作状态,即图中J32的3-1脚之间的线圈与对应所控制的触点,其工作状况如下:
合上点火开关,使X线有电,于是X线+→S16→J32/(3-1)→J32/(8-6)+
上式中,X线为中央继电器板中大容量用电设备电源线,当点火开关在启动状态,或熄火,X线都是有电的,用X线右上角加+表示,即X线+;“–”表示某个元件总成内部的连接线;“→”表示各元件之间的连接导线;S16表示第16号熔丝。另外J32/(3-1)分子中J32表示元件名称;分母括号中3与1分别表示J32元件上的3号与1号接线柱;J32右上角的+号表示J32的3-1接线柱之间的线圈得电;而J32/(8-6)+表示J32的8-6脚之间接通;而如果是J32/(8-6)则表示J32的8脚至6脚。以上表示方法在后述文中还常会用到。
上式中由于J32/(3-1)电磁线圈得电,又导致J32/(8-6)+,于是产生如下工作电流:
30号线→S6→J32/(8-6)+→E9/2+
当鼓风机处于任意挡速度运转时,通过操作空调面板上的出风方向控制旋钮,即可改变出风的流动方向,以实现通风、取暖和除霜去雾等不同功能。
(2)空调开关E30接通后鼓风机运转的电路分析
发动机启动后,如果直接接通空调开关E30,而此时如果并没有接通鼓风机开关E9电路,但鼓风机仍将以最低转速自动运转,以保证汽车空调在制冷系统工作后,有循环风吹经蒸发器的散热片及蛇形管的表面,不至于引起因蒸发器表面温度太低而结霜,同时也不至于蒸发器内制冷剂由于吸收不到热量而以液态形式进入压缩机。空调开关E30接通后,鼓风机运转的电路如下:
X线→S16→E30/(5-6)→J32/(2-1)
J32的2-1脚线圈有电,将导致J32/(8-7)+,于是有电流如下:
30号线→S6→J32/(8-7)→N23/(1-4)→V2(1-2)→接地而直接流通鼓风机以最低转速挡自动运转。此时如果操作鼓风机开关E9,仍可改变V2的转速。
对于一汽大众速腾的空调操作开关,由于在E30不工作时,可单独操作E159,即图中16~19位置上,所以在进行取暖或除霜去雾工作时,可进行内外循环工作方式的切换,这一点也是一汽大众速腾在空调操作功能上的独到之处。
2. 压缩机电磁离合器线圈N25的控制电路
这里所述的压缩机电磁离合器的控制部分,是指空调E30开关合上后所控制的所有电路。这些电路可分成四个部分:
(1)空调继电器J32的控制电路
在发动机工作以后,中央继电器板内30号线、15号线与X号线都已有电,此时合上空调开关E30/(5-6)+便有如下继电器的控制电路:
X线+→S16→E30/(5-6)→J32/(2-1)
J32的(2-1)线圈得电,将导致鼓风机以最低转速运转。
此时如果操作鼓风机开关E9,则可改变V2的转速。
(2)内循环真空继电器线圈N63控制电路
当空调开关E30/(5-6)+合上后,则E30/(2-1)+的触点也将同步合上,但是开关的这种功能单从图纸的开关符合上是无法确定的,这也是电路图的遗憾之处,在此必须补充说明。所以当E30/(5-6)+合上后,即有E30/(2-1)+,所以N63控制电路如下:
X线→S16→E30/(2-1)→N63/(2-1)→接地
于是N63接通了控制进气门真空马达的真空气源,真空马达通过拉杆进气风门,使进风门从外循环位置转向内循环位置。
(3)风扇继电器J293的空调开关E30信号电路
当空调开关E30/(5-6)+合上后,就有E30空调开关的信号电流通到风扇J293,电路如下:
X线→S16→E30/(5-6)→E33/(1-2)→F38/(1-2)→F129/(2-1)→F40/(2-1)→J293/T10/3
上式中F38为环境温度开关,大约在2℃以上为接通状态,2℃以下断开状态;E33为蒸发器表面防霜开关。F40为发动机高温开关,当发动机水温在120℃以上时切断,120℃以下则接通,F129是安装在储液干燥器上的复合压力开关,其中1与2号脚是在空调系统制冷剂压力大于0.196MPa及小于3.14MPa时接通,而3号与4号脚则在系统制冷剂压力大于1.77MPa时接通,而小于1.37MPa时又切断;但此时尽管风扇继电器J293的T10.3脚已经收到E30开关的工作信号,然而J293对于压缩机电磁离合器N25的控制信号并不马上在J293/T10/10脚输出,它还要受到另外一个信号的控制,所以有下面第(4)方面的电路。
(4)与发动机电脑J220相联系的控制电路
一汽大众速腾在发动机部分虽稍做改动,但总体上仍采用与时代超人相同的电喷发动机2VQS,所以也采用了相同的发动机控制电脑J220,即BOSCHM3.8.2控制单元。该发动机控制单元J220与空调开关E30相连,还通过安装在发动机舱继电器一熔丝盒内RL2位置上的空调压缩机切断继电器J26与风扇继电器J293/T10/8的脚相连接,对空调实现如下的控制功能。
在发动机正常工况条件下,如果接通空调开关E30,BOSCHM3.8.2控制单元会在接到空调E30信号后140ms内接通压缩机电磁离合器线圈电路,空调便开始工作,由于空调工作要引起发动机输出功率和转速的变化,为此发动机控制单元通过控制部件J338始终维持发动机怠速稳定。另外在下列工况下,发动机控制单元将切断空调压缩机的工作。
当驾驶员急加速把油门突然踩到底时;
当发动机节气门控制器J338处于紧急运行模式时;
当发动机冷却水温度超过120℃时;
为此与发动机电脑J220相联系的控制电路如下:
当发动机工作后,按下空调开关E30,E30通知发动机电脑的信号电流如下:
X线一S16→E30/(5-6)→E33/(1-2)→F38/(1-2)→F129/(2-1)→F40/(2-1)→J220/T80/10
如果发动机电脑不允许空调电路工作,则J220/T80/8脚就会输出低电压信号至J26/86,否则J220/T80/8脚将会输出高电压信号至J26/86,见图中50位置,控制J26的触点保持闭合,其工作过程如下。在电路图的50位置上有。
J220/T80/8→J26/(86-85)+→接地
如果J26/(86-85)+则先前到达J293/T10/3端的空调开关E30工作信号将进一步经过J26/(30-87a)送到J293/T10/8,电流如下:
J293/T10/3→J26/(30-87a)→J293/T10/8
J293/T10/8收到E30/(5-6)+信号后立刻在相应输出端J293/T10/10输出高电压至压缩机电磁离合器线圈N25,使N25,压缩机电磁离合器吸合,制冷系统进行循环工作。
空调电子风扇继电器J293的顶面一端有两个熔丝,都是30A的规格,其中一个是电子风扇V7、V8的短路保护控制,另一个是压缩机电磁离合器线圈N25短路保护控制。
3. 电子风扇的控制电路
在汽车上,电子风扇安装在发动器散热器的后面,电子风扇的运转及对应转速受到发动机冷却水温度以及空调运转及工况的双重控制,桑塔纳3000空调的电子风扇的控制电路在电路图中29~68位置之间,分析如下:
①当发动机水温达到95℃时,安装在发动机散热器上热敏开关F18的低温挡触点闭合,图中68号位置上的F18/(1-2)+。
V7、V8低速挡的电流路径如下:
A/+→S301→S211→F18/(1-2)+→V7/(2-3)→A/–→V8/(2-3)
式中,A/+分子A表示蓄电池;分母中“+”表示蓄电池正极;相应的A/–表示蓄电池负极;于是电子风扇V7、V8以低速挡运转。
②当发动机温度达到105℃时,图中67号位置上的F18/(1-3)+,即高速挡触点闭合,于是高速挡电流路径如下:
A/+→S301→S211→F18/(1-3)+→J293/T10/7
图中37-44位置上J293是空调的风扇继电器,主要起到功率的放大与控制作用,用于控制电子风扇V7、V8及压缩机电磁离合器N25。当J293的T10/7脚接到F18/3脚高速挡运转信号后,在37号上J293的T4/2,即J293/T4/2输出高电压信号并送至31号位置V8/1脚与34号位置V7脚,于是V7、V8高速运转。
由于仅当发动机冷却液温度足够高,大于等于95℃后,发动机散热器与空调冷凝器的电子风扇就会旋转,所以在高温季节,即使发动机熄火后的较长时间内,电子风扇仍会高速旋转,这主要是发动机冷却水实际温度较高所致,如果发动机实际水温已低于92℃,电子风扇仍在旋转,则可能是F18或风扇电路存在其他故障。
③当空调开关E30/(5-6),电子风扇也会低速旋转,分析如下:
在图中19-21号位置上空调开关E30/(5-6)+后,有电流如下:
X线→S16→E30/(5-6)→E33/(1-2)→F38/(1-2)→F129/(2-1)→F40/(2-1)→J293/T10/3
而当J293/T10/3脚接到信号后,J293相对应的J293/T4/3输出端输出高电压信号至V7、V8的2脚,使V7、V8以低速挡运转。以上分析可见,只要空调开关E30合上,电子风扇就会低速运转,以满足空调工作时对冷凝器的散热要求。
④运行中的空调系统在高压压力达到1.77MPa时,电子风扇也会高速旋转。分析如下:
如果运行中的空调系统在高压压力达到1.77MPa时,则安装在储液干燥器上的复合压力开关F129/(4-3)+,(图中46号位置上)于是有电流如下:
X线→S216→F129/(4-3)→J293/T10/2
当J293/T10/2接收到信号后,就会控制其相应输出端T4/2输出高电压,该高电压通至V7、V8的1号脚,使V7、V8以高速挡转速旋转,以加大冷凝器的散热速度,直至系统压力下降到1.37MPa时F129的4-3脚断开,电子风扇又恢复低速挡运转。
汽车鼓风机工作电路图:一种汽车空调鼓风机控制电路的制作方法
专利名称:一种汽车空调鼓风机控制电路的制作方法
技术领域:
本实用新型涉及ー种汽车空调鼓风机,尤其涉及一种汽车空调鼓风机控制电路。
背景技术:
目前,很多汽车空调鼓风机控制采用调速电阻器来控制鼓风机的转速。因为鼓风机转速是由通过其电流的大小来決定的,要调控鼓风机的转速,只需改变鼓风机的电流即可。而这样的通过改变电阻器的电阻来调控鼓风机的转速的方法实现虽简单,但不易撑控。
实用新型内容本实用新型要解决的技术问题是提供一种汽车空调鼓风机控制电路。为达到上述目的,本实用新型的技术方案如下一种汽车空调鼓风机控制电路,所述鼓风机控制电路的输出端与功率MOS管相连,所述鼓风机控制电路的另一端与微控制器相连,所述功率MOS管与鼓风机相连,所述鼓风机与微控制器相连。优选的,所述的鼓风机控制电路包括鼓风机的电源信号FAN_PWR,电源信号FAN_PWR通过第一电阻Rl与第二运算放大器ΠΒ的正极相连,第二运算放大器ΠΒ的正极通过并接的第三电阻R3和第一电容Cl后接地,鼓风机的反馈信号FAN_FB通过第二电阻R2与第二运算放大器ΠΒ的负极相连,第二运算放大器ΠΒ的负极通过第二电容C2与电源地相连,第二运算放大器ΠΒ的输出信号通过并接的第四电阻R4和第四电容C4反馈到其负极输入端,第二运算放大器的输出端通过第五电阻RS连到CPU的米样信号ANI7,第五电阻RS的另一端通过第三电容C3接地;第二运算放大器UlB的输出端通过第二十二电阻R22与第一运算放大器UIA的正极相连,第一运算放大器UIA的负极通过电解电容El与地相连,CPU的控制信号V_C0N经过第六电阻R6与第一运算放大器UIA的负极相连,CPU的控制信号V_C0N通过第七电阻R7与电源地相连第一运算放大器ΠΑ的输出端通过第五积分电容CS连到其正极输入端,第一运算放大器的输出端通过第二十五电阻R2S与第一三极管TRl的集电极相连,第一三极管TRl的发射极与电源地相连,CPU的开关控制信号FAN_CUT通过第二十四电阻R24与第一三极管TRl的基极相连,电源信号VCC通过第二十三电阻R23与CPU控制信号FAN_CUT相连,第一三极管TRl的基极通过第六电容C6与电源地相连,鼓风机的控制信号FAN_CTR通过第二十六电阻R26与第一三极管TRl的集电极相连功率MOS管的漏极与鼓风机的负极相连,DC12V电源正极与鼓风机的的正极相连,DC12V电源负极与MOS管的源极相连鼓风机电路的控制信号FAN_CTR接MOS管的栅极,从鼓风机的负端引出反馈信号FAN_FIB接鼓风机电路的反馈信号输入端FAN_FIB,鼓风机的DC12V电源接鼓风机电路的电源信号输入端FAN_PWR。通过上述技术方案,本实用新型的有益效果是通过控制鼓风机电路的输出电压即可改变MOSFE下NI栅源之间的电流,从而可控制鼓风机的转速。
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图I是本实用新型的模块图;图2是图I中鼓风机控制电路的具体线路图;图3是图I中功率MOS管具体线路图。·具体实施方式
为了使本实用新型实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进ー步阐述本实用新型。由图I可见,本实用新型一种汽车空调鼓风机控制电路,所述鼓风机控制电路的输出端与功率MOS管相连,所述鼓风机控制电路的另一端与微控制器相连,所述功率MOS管与鼓风机相连,所述鼓风机与微控制器相连。所述微控制器读取鼓风机当前的工作状态,并通过鼓风机电路控制鼓风机的运转。鼓风机控制电路包括反馈运算电路,对鼓风机电源、反馈信号进行差分比例运算;微控制器控制信号输入电路,鼓风机控制信号输出电路,对微控制器的控制信号进行积分运算;鼓风机开关电路,控制鼓风机的开断。由图2可见,所述的鼓风机控制电路包括鼓风机的电源信号FAN_PWR,电源信号FAN_PWR通过第一电阻Rl与第二运算放大器ΠΒ的正极相连,第二运算放大器ΠΒ的正极通过并接的第三电阻R3和第一电容Cl后接地,鼓风机的反馈信号FAN_FIB通过第二电阻R2与第二运算放大器ΠΒ的负极相连,第二运算放大器ΠΒ的负极通过第二电容C2与电源地相连,第二运算放大器ΠΒ的输出信号通过并接的第四电阻R4和第四电容C4反馈到其负极输入端,第二运算放大器的输出端通过第五电阻R5连到CPU的采样信号ANI7,第五电阻R5的另一端通过第三电容C3接地第二运算放大器ΠΒ的输出端通过第二十二电阻R22与第一运算放大器ΠΑ的正极相连,第一运算放大器ΠΑ的负极通过电解电容El与地相连,CPU的控制信号V_C0N经过第六电阻R6与第一运算放大器UIA的负极相连,CPU的控制信号V_C0N通过第七电阻R7与电源地相连第一运算放大器UIA的输出端通过第五积分电容C5连到其正极输入端,第一运算放大器的输出端通过第二十五电阻R25与第一三极管TRl的集电极相连,第一三极管TRl的发射极与电源地相连,CPU的开关控制信号FAN_CUT通过第二十四电阻R24与第一三极管TRl的基极相连,电源信号VCC通过第二十二电阻R23与CPU控制信号FAN_CUT相连,第一三极管TRl的基极通过第六电容C6与电源地相连,鼓风机的控制信号FAN_CTR通过第二十六电阻R26与第一三极管TRl的集电极相连由图3可见,调速模块功率MOS管的漏极与鼓风机的负极相连,DC12V电源正极与鼓风机的的正极相连,DC12V电源负极与MOS管的源极相连。鼓风机电路的控制信号FAN_CTR接MOS管的栅极,从鼓风机的负端引出反馈信号FAN_F/B接鼓风机电路的反馈信号输入端FAN_FIB,鼓风机的DC12V电源接鼓风机电路的电源信号输入端FAN_PWR。[0018]由MOS管的特性可知,流过漏源的电流iD与栅源间的电压Ufc成一定的函数关系iD=f (Ugs) /Uds当 Ugs为零或很小吋,MOS管中不会有电流,管子处在截止状态;当Ugs > Utn(Utn为MOS管的导通电压)后,在Uds比较小时,iD与Uds(漏源之间的电压)成近似线性关系,因此可把漏极和源极之间看成是ー个可由Ugs进行控制的电阻,Ugs越大,曲线越陆,等效电阻越小。当Ugs > Utn,在Uds比较大时,iD仅决定于Ues,而与Uds几乎无关,D、S之间可以看为ー个受Ues控制的电流源。所以通过控制鼓风机电路的输出电压Ues即可改变MOSFE-Nl栅源之间的电流,从而可控制鼓风机的转速。本实用新型的目的是控制鼓风机转速,FAN_PWR和FAN_F/B为鼓风机两端的电压信号,代表鼓风机的工作电压,经比例运算电路后得到的电压值作为鼓风机的采样电压送到微控制器,微控制器将该电压与设定的控制电压进行比较后去控制鼓风机的转速(电压),使鼓风机的实际电压与设定的控制电压相等鼓风机打开关闭则通过微控制器控制FAN_CUT信号实现。在图2中FAN_PWR为鼓风机电源FAN_F/B为鼓风机反馈信号ANI7为CPU的采样信号V_C0N为鼓风机电路的控制信号FAN_CUT为开关控制信号FAN_CTR为鼓风机控制信号本实用新型充份考虑到了各种干扰杂波存在的情况,有效的抑制了各种干扰和高频杂波,保证了电路的稳定工作。以上显示和描述了本实用新型的基本原理和主要特征和本实用新型的优点。本行业的技术人员应该了解,本实用新型不受上述实施例的限制,上述实施例和说明书中描述的只是说明本实用新型的原理,在不脱离本实用新型精神和范围的前提下,本实用新型还会有各种变化和改进,这些变化和改进都落入要求保护的本实用新型范围内。本实用新型要求保护范围由所附的权利要求书及其等效物界定。
权利要求1.一种汽车空调鼓风机控制电路,其特征在于所述鼓风机控制电路的输出端与功率MOS管相连,所述鼓风机控制电路的另一端与微控制器相连,所述功率MOS管与鼓风机相连,所述鼓风机与微控制器相连。
2.根据权利要求I所述的ー种汽车空调鼓风机控制电路,其特征在于所述的鼓风机控制电路包括鼓风机的电源信号(FAN_PWR),电源信号(FAN_PWR)通过第一电阻(Rl)与第ニ运算放大器(UIB)的正极相连,第二运算放大器(UIB)的正极通过并接的第三电阻(R3)和第一电容(Cl)后接地,鼓风机的反馈信号(FANFB)通过第二电阻(R2)与第二运算放大器(UIB)的负极相连,第二运算放大器(UIB)的负极通过第二电容(C2)与电源地相连,第ニ运算放大器(ΠΒ)的输出信号通过并接的第四电阻(R4)和第四电容(C4)反馈到其负极 输入端,第二运算放大器的输出端通过第五电阻(RS)连到CPU的采样信号(ANI7),第五电阻(RS)的另一端通过第三电容(C3)接地;第二运算放大器(UlB)的输出端通过第二十二电阻(R22)与第一运算放大器(UIA)的正极相连,第一运算放大器(UIA)的负极通过电解电容(El)与地相连,CPU的控制信号(V_C0N)经过第六电阻(R6)与第一运算放大器(UIA)的负极相连,CPU的控制信号(V_C0N)通过第七电阻(R7)与电源地相连第一运算放大器(UIA)的输出端通过第五积分电容(CS)连到其正极输入端,第一运算放大器的输出端通过第二十五电阻(R2S)与第一三极管(TRl)的集电极相连,第一三极管(TRl)的发射极与电源地相连,CPU的开关控制信号(FAN_CUT)通过第二十四电阻(R24)与第一三极管(TRl)的基极相连,电源信号(VCC)通过第二十三电阻(R23)与CPU控制信号(FAN_CUT)相连,第一三极管(TRl)的基极通过第六电容(C6)与电源地相连,鼓风机的控制信号(FAN_CTR)通过第二十六电阻(R26)与第一三极管(TRl)的集电极相连功率MOS管的漏极与鼓风机的负极相连,DC12V电源正极与鼓风机的正极相连,DC12V电源负极与MOS管的源极相连,鼓风机电路的控制信号(FAN_CTR)接MOS管的栅极,从鼓风机的负端引出反馈信号(FAN_FIB)接鼓风机电路的反馈信号输入端(FAN_FIB),鼓风机的DC12V电源接鼓风机电路的电源信号输入端(FAN_PWR)。
专利摘要本实用新型涉及一种汽车空调鼓风机控制电路,所述鼓风机控制电路的输出端与功率MOS管相连,所述鼓风机控制电路的另一端与微控制器相连,所述功率MOS管与鼓风机相连,所述鼓风机与微控制器相连。本实用新型通过控制鼓风机电路的输出电压即可改变MOSFET-N1栅源之间的电流,从而可控制鼓风机的转速。
文档编号F04D27/00GKSQ
公开日2012年9月26日 申请日期2011年11月10日 优先权日2011年11月10日
发明者张晶, 徐伟, 文玉远, 王文忠 申请人:上海福太隆汽车电子科技有限公司
汽车鼓风机工作电路图:汽车空调暖风系统的组成和工作原理
汽车的暖风系统可以将车内的空气或从车外吸入车内的空气加热,提高车内的温度。汽车的暖风系统有许多,按热源的不同可分为热水取暖系统、燃气取暖系统、取暖系统等,目前小车上主要采用热水取暖系统,大型车辆上主要采用燃气取暖系统。
汽车空调暖风系统的组成
1) 热水取暖系统的工作原理
热水取暖系统的热源通常采用发动机的冷却水,使冷却水流过一个加热器芯,再使用鼓风机将冷空气吹过加热器芯加热空气,使车内的温度升高,见图4-40。
(汽車维修技术网
的组成和
图4-40 热水取暖系统的工作原理
2) 热水取暖系统的组成和部件的
热水取暖系统主要由加热器芯、水阀、鼓风机、控制面板等组成。
(1)加热器芯
加热器芯的结构如图4-41所示,由水管和散热器片组成,发动机的冷却水进入加热器芯的水管,通过散热器片散热后,再返回发动机的。
图4-41 加热器芯
(2)水阀
水阀用来控制进入加热器芯的水量,进而调节暖风系统的加热量,调节时,可通过控制面板上的调节杆或旋钮进行控制,其结构见图4-42。
图4-42 水阀
(3)鼓风机
鼓风机由可调节速度的和鼠笼式风扇组成,其作用是将空气吹过加热器芯加热后送入车内。调节电动机的速度,可以调节向车厢内的送风量。鼓风机的结构见图4-43。
图4-43 鼓风机
3) 热水取暖系统调节温度的方式
4) 就暖风系统而言,其温度的调节方式有两种,一种是空气混合型,另一种是水流调节型。
(1)空气混合型
这种类型的暖风系统在暖风的气道中安装空气混合调节风门,这个风门可以控制通过加热器芯的空气和不通过加热器芯的空气的比例,实现温度的调节,目前绝大多数汽车均采用这种方式,其示意图见图4-44。
图4-44 空气混合型暖风系统
(2)水流调节型
这类暖风系统采用前述的水阀调节流经加热器芯的热水量,改变加热器芯本身的温度,进而调节温度。其调节的示意图见图4-45。
在大、中型客车上,仅靠发动机冷却水的余热取暖是远远满足不了要求的,为此,在大客车中常采用燃气取暖系统。燃气取暖系统的示意图见图4-47, 燃油和空气在中混合燃烧,加热发动机的,加热后的水进入加热器芯向外散热,降温后返回发动机再进行循环。
简单而供热可靠,不另需,只要发动机工作,便可产生热水。其缺点是必须在发动机冷却水温度上升到大循环时才能供暖,在寒冷季节供暖量显得有些不足,甚至导致发动机过冷,影响发动机的正常工作;在取暖时,发动机的运行增加了发动机的;大型客车仅依靠这种装置难以满足供暖要求,而且新型的效率高, 可用作暖的余热相对比少,所需升温时间比稍长,。
缺点:效率低、复杂、体积较大,如果热交换器漏气,则废气进入车厢,造成污染。目前很少使用该取暧方式。
求购罗茨鼓风机 锦工罗茨风机罗茨鼓风机 台湾罗茨鼓风机 福建三叶罗茨鼓风机
山东锦工有限公司
地址:山东省章丘市经济开发区
电话:0531-83825699
传真:0531-83211205
24小时销售服务电话:15066131928
